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1. Introduction 
 
Pattern matching occurs in various applications, ranging from simple text searching in 
word processors to identification of common motifs in DNA sequences in computational 
biology.  The problem of exact pattern matching has been well studied and a number of 
efficient algorithms exist.  However these exact pattern matching algorithms are of little 
help when they are applied to finding patterns in DNA sequences.  The DNA sequence 
search is inheritably inexact in nature because there are acceptable equivalences of amino 
acids that made up of the sequence. Current inexact pattern matching algorithms are 
based on four approaches: (1) Dynamic Programming; (2) Automata; (3) Bit-Parallelism; 
(4) Filtering.  This paper serves as an overview of the common existing inexact pattern 
matching algorithms, with the focus on automata approach. 
 
2. Exact Pattern Matching 
 
Exact pattern matching is the basis for all text searching applications and this section 
review some of the most common algorithm for exact match.   The problem can be stated 
as: Given a pattern P of length m and a string (or text) T of length n (m ≤ n), find all the 
occurrences of P in T.  The match is an exact one, meaning that the exact word or pattern 
is found.  In Unix environment, there is a useful command utility command “grep” which 
allows the user to search globally for lines matching the regular expression, and print 
them.  Common exact matching algorithms are: 
 
2.1. Naïve Brute Force Algorithm 
 
This is the simplest method with the worst performance of O(mn).  The first character of 
pattern P is compared with the first character of the string T.  If it is a match, then pattern 
P and string T are matched character by character until a mismatch or the end of the 
pattern P is detected.  If a mismatch is found, the pattern P is shifted one character to the 
right and the same matching process repeats. The algorithm is inefficient because, after a 
mismatch is detected, the shift-increment is only one character at a time.  
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2.2. Boyer-Moore Algorithm 
 
The Boyer-Moore algorithm [BM1977] applies larger shift-increment for each mismatch 
detection  A main modification to the naïve algorithm is that the matching of pattern P 
and string T is done from right to left, i.e. after aligning P and T, the last character of P 
will be matched to T first.  If a mismatch is detected, and if the mismatch character, say c, 
in T is not in P, then P is shifted right to m positions and P is aligned to the next character 
after c. If c is part of P, then P is shifted right so that c is aligned with the rightmost 
occurrence of c in P. The worst complexity is still O(m+n). In practice the algorithm 
performs on average O(n/m), since the shifting-increment on average is the half of the 
length of P, (m/2). 
 
2.3.Knuth-Morris_Pratt Algorithm 
 
The Knuth-Morris-Pratt algorithm [KMP1977] is based on finite state automaton. The 
pattern P is pre-processed to create a finite state automaton M that accepts the pattern. 
The finite state automaton M is usually represented as a transition table. For example, if 
the pattern P is “genome”, the following non-deterministic finite automata (NFA) will be 
created to accept the pattern: 

 
Figure 1.  NFA that search “genome” exactly 

 
In the classical implementation of algorithm, the NFA is converted to a deterministic 
finite automaton (DFA).   The following is the equivalent DFA of the above NFA: 
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Figure 2.  DFA that search “genome” exactly 

 
The number of states of machine M required is (m+1). For each state, the number of 
transitions is |Σ|, where Σ is the alphabet set of characters for T.  Both the average and 
worst case performance is O(m+n).  The size of the transition table required is O(m.|Σ|).).  
This approach can easily be extended to handle search with a larger set of patterns or 
even regular expressions, including inexact pattern matching. 
 
3. Inexact Pattern Matching 
 
The need to align inexact sequence data arises in various fields and applications such as 
computational biology, signal processing and text processing. In particular, in DNA 
sequence analysis, exact sequence matching is rare.  Due to possible DNA mutation, the 
biological inference does not expect an identical match, but rather a high sequence 
similarity usually implies significant functional or structural similarity.   
 
Inexact pattern matching is sometimes referred as “approximate pattern matching” or 
“matching with k mismatches/differences”. This problem, in the general form, can be 
stated as: Given a pattern P of length m and a string (or text) T of length n (m ≤ n), find 
all the occurrences of substrings X in T that are “similar” to P, allowing a limited 
number, say k, of “errors” in the “similarity” matches.  The “errors” are the total cost of 
transforming the pattern P so that P and X are equal. The common allowable 
edit/transformation operations are insertion, deletion and substitution. The common error 
model is called “edit distance”. The edit distance is the minimal number of edit 
operations required to transform the first sequence into the second. 
 
Inexact pattern matching algorithms can be classified into four main categories: 
 
3.1. Dynamic Programming Approach 

 
This is the oldest among the four approaches and the most commonly used approach, 
especially in the area of biological sequence analysis. Examples are the Needleman–
Wunsch algorithm and Smith-Waterman algorithm. These algorithms are much more 
complex than the ones for exact pattern matching. It involved solving successive 
recurrence relations recursively. i.e. smaller problems are solved in succession to solve 
the main problem. The classical dynamic programming algorithm can also be thought of 
as a column-wise “parallelization” of the automaton. 
 
The major advantage of dynamic programming approach is its flexibility in adapting to 
different edit distance functions. In general, the worst case complexity is O(mn). Over the 
past two decades, a number of improved solutions have been proposed to lower the worst 
case complexity to O(kn) and average complexity of O(kn/√|Σ| ).   
 
3.2. Automata Approach 
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This approach is also rather old.  Though automata approach doesn’t offer time advantage 
over Boyle-Moore algorithm for exact pattern matching, this approach does offer better 
running time for inexact pattern matching. Both the average and worst case performance 
remain O(m+n). 
 
3.2.1 General Approach 
This automaton approach is first proposed by Ukkonen in 1985 [Ukk1985].  Consider a 
non-deterministic automaton (NFA) for k=2 errors, in Figure.3: 
 

 
 

Figure 3. NFA for approximate string matching of the pattern "genome" with two 
errors. The shaded states are those active after reading the text "genames". 

 
Every row denotes the number of errors seen (the first row zero, the second row one, 
etc.). Every column represents matching a pattern prefix. Horizontal arrows represent 
matching a character. All the others increment the number of errors and move to the next 
row. Vertical arrows represent insertion of a character (or known as a gap) into the 
pattern (string T is advanced without advancing pattern P). Solid diagonal arrows 
represent a single character substitution (both string T and pattern P are advanced). 
Dashed diagonal arrows ("ε-transitions) represent deletion of a character from the pattern 
(pattern P is advanced without advancing in the string T). Alternatively, we can also 
consider the last case as insertion of a gap to the string T. 
 
The total number of states for this NFA is (k+1)(m+1). The initial self-loop allows a 
match to start anywhere in the string. The automaton signals a match whenever one of the 
rightmost states in the last column is active. It is easy to see that once a state in the 
automaton is active; all the states of the same column and higher numbered rows are 
active too.  
 
Deterministic automata exhibit an O(n) worst-case search time. However, the main 
problem to this approach is the construction of the DFA from NFA which takes 
exponential time and space. An alternative solution is based on simulating the NFA 
instead of making it deterministic as described in some of the algorithms below. 
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3.2.2 Algorithms Based on Automata 
3.2.2.1 [Ukk1985] 

 In 1985, Ukkonen first proposed the idea using a DFA for solving the inexact 
matching problem. A state of the DFA corresponds to the possible set of values for 
the columns of the dynamic programming matrix.  
 
A big problem with this scheme was that the DFA had a huge number of states, which 
had to be built and stored. To improve space usage, Ukkonen proved that all the 
elements in the columns that were larger than k could be replaced by k+1 without 
affecting the output of the search. This reduced the potential number of different 
columns. He also showed that adjacent cells in a column differed in at most one.  By 
applying these modifications, he obtained a nontrivial bound, O(min(3m,m(2m|Σ|)k)), 
on the number of states of the automaton.  This size, although much better than the 
obvious O((k+1)m), is still very large except for short patterns or very low error 
levels.  

 
3.2.2.2. [WMM1996] 

Their idea was to trade time for space using a Four Russians technique.  The columns 
were partitioned into blocks of r cells (called “regions”) which took 2r bits each. 
Instead of pre-computing the transitions from a whole column to the next, the 
transitions from a region to the next region in the column were pre-computed, 
although the current region could now depend on three previous regions. Since the 
regions were smaller than the columns, much less space was necessary. The total 
amount of work was O(m/r) per column in the worst case and O (k/r) on average. The 
space requirement was exponential in r. By using O(n) extra space, the algorithm was 
O(kn / log n) on average and O(mn / log n) in the worst case. This work was later 
extended to handle regular expressions allowing errors. The technique for exact 
regular expression searching is to pack portions of the deterministic automaton in bits 
and compute transition tables for each portion. The few transitions among portions 
are left nondeterministic and simulated one by one. To allow errors, each state is no 
longer active or inactive, but they keep count of the minimum number of errors that 
makes it active, in O(log k) bits. 
 

3.2.2.3 [Mel1996]  
Melichar further studied the size problem of the deterministic automaton. By 
considering the properties of the NFA of Figure 3, he improved the bound of 
[Ukk1985] to O(min(3m,m(2mt)k, (k+2)m-k(k+1)!)), where t = min(m+1, |Σ|). The 
space complexity and preprocessing time of the automaton is t times the number of 
states.  

 
3.2.2.4 [Kur1996]  

In 1996, Kurtz proposed another way to reduce the space requirements to at most 
O(mn). The idea was to build the automaton in lazy form, i.e. build only the states 
and transitions actually reached in the processing of the text. The automaton starts as 
just one initial state and the states and transitions are built as needed. Those 
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transitions that were not necessary were not built.  Kurtz also proposed building only 
the initial part of the automaton, which should be the most commonly traversed 
states, to save space. However, the growth of the lazy automata is a function of m, k 
and n. Empirical results showed that the lazy automaton grows with the text at a rate 
of O(nβ ), for 0 < β < 1, depending on |Σ|, m, and k.  
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3.2.2.5 [Hol1996] 
Holub showed how to reduce the number of states of nondeterministic finite automata 
to (k+1)(m+1-k) for approximate string matching when it is not necessary to know 
how many mismatches are in the found string. This algorithm is based on Shift-Or 
algorithm and thus it reduces the length of the state vectors that needed to be 
computed by the Shift-Or algorithm. 

 
3.3. Bit-Parallelism 

 
This approach is rather new (after 1990) and is based on exploiting the intrinsic 
parallelism of the bit operations inside a computer word. The basic idea is to “parallelize” 
another algorithm, possibly those algorithms from the previous two approaches in 
sections 3.1 and 3.2, using bits. In general, the number of operations that an algorithm 
performs can be cut down by a factor of at most w, where w is the number of bits in a 
computer word. Since in current computer architectures, w is 32 or 64, the speedup is 
very significant in practice. The results are especially significant when short patterns are 
involved. They may work effectively for any error level. 
 
The first bit-parallel algorithm is known as “Shift-Or” which searches a pattern in a text 
(without errors) by parallelizing the operation of a nondeterministic finite automaton that 
looks for the pattern. Figure 1 illustrates this automaton. This automaton has m+1 states, 
and can be simulated in its nondeterministic form in O(mn) time. For patterns longer than 
the computer word (i.e. m>w), the algorithm uses (m/w) computer words for the 
simulation. The algorithm is O(n) on average. 
 
Bit-parallelism has become a general way to simulate simple nondeterministic automata 
instead of converting them to deterministic form. It has the advantage of being much 
simpler, in many cases faster, and easier to extend in handling complex patterns than its 
classical counterparts.  Its main disadvantage is the limitation it is imposed by the size of 
the computer word. In many cases its adaptations for longer pattern search are not very 
efficient.  
 
There are two main trends in bit-parallelism approach: (1) parallelize the work of the 
dynamic programming matrix; or (2) parallelize the work of the nondeterministic 
automaton. 
 
3.3.1 Parallelizing the Dynamic Programming Matrix 
 
3.3.1.1 [Wri1994] 

In 1994, Wright considered secondary diagonals (i.e. those that run from the upper-
right to the bottom-left) of the dynamic programming matrix. The main observation is 
that the elements of the new secondary diagonal can be computed using the two 
previous ones. The algorithm packs many patterns and text characters in a computer 
word and performs in parallel a number of patterns versus text comparisons, then uses 
the vector of the results of the comparisons to update many cells of the diagonal in 
parallel. Since it has to store characters of the alphabet in the bits, the algorithm is 
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O(nmlog(|Σ|)/w) in the worst and average case. This was efficient for small alphabets 
(e.g. DNA). However it is difficult to adapt this algorithm for other distance 
functions. 

 
3.3.1.2 [Mye1999] 

Myers proposed a better way to parallelize the computation of the dynamic 
programming matrix. He represented the differences along columns instead of the 
columns themselves, so that two bits per cell were enough.  The idea is to keep 
packed binary vectors representing the current values of the differences, and finding 
the way to update the vectors in a single operation.  This results in a better uses of the 
bits of the computer word, with a worst case of O((m/w).n) and an average case of 
O((k/w).n). The algorithm adapts better to longer patterns and search on extended 
patterns. 

 
3.3.2 Parallelizing Nondeterministic Automata 
 
3.3.2.1 [WM1992] 

The idea is to simulate, using bit-parallelism, the NFA of Figure 3, so that each row i 
of the automaton fits in a computer word (each state is represented by a bit). For each 
new text character, all the transitions of the automaton are simulated using bit 
operations among the k+1 computer words. All k+1 computer words have the same 
structure (i.e. the same bit is aligned on the same text position).  

 
The cost of this simulation is O(k.(m/w).n) in the worst and average case, which is 
O(kn) for patterns typical in text searching (i.e. m ≤ w). For short patterns, this is 
competitive to the best worst-case algorithms. This algorithm is also able to perform 
approximate string matching with sets of characters, wild cards, and regular 
expressions. Agrep (Approximate grep) was developed with all these search options.  

 
3.3.2.2 [BYN1999] 

In 1999, Baeza-Yates and Navarro proposed a bit-parallel formula for a diagonal 
parallelization of the computation of the automaton. They packed the states of the 
automaton along diagonals instead of rows or columns, which run in the same 
direction of the diagonal arrows (notice that this is totally different from the diagonals 
of the dynamic programming matrix). 

 
The resulting algorithm is O(n) worst case time and very fast in practice if all the bits 
of the automaton fit in the computer word. In general, it is O((k(m-k)/w).n) worst 
case time, and O((k2/w).n) on average. The algorithm can handle classes of 
characters, wild cards and different integral costs in the edit operations. 

 
3.4. Filtering Algorithms 
 
This approach started in 1990 and has been most very active since.  Most of the new 
algorithms proposed in recent years belong to this class [Nav2001].  Filtering is based on 
the fact that it may be much easier to tell that a text position does not match than to tell 
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that it matches. It is formed by algorithms that filter the text, quickly discarding text areas 
that do not match. Since the exact searching algorithms is much faster than approximate 
searching ones, most filtering algorithms take advantage of this fact by searching pieces 
of the pattern without errors.  
 
Filtering algorithm, by itself, is normally unable to discover the matching text positions.  
Rather, it is used to discard large areas of the text that cannot contain a match.  Filtering 
algorithms must couple with a process that verifies all those potential text matching 
positions. Any non-filtering algorithm can be used for this verification. The selection is 
normally independent, but the verification algorithm must behave well on short texts 
because it can be started at many different text positions to work on small text areas. 
 
The major interest in this approach is the potential for algorithms that do not inspect all 
text characters. These filtering algorithms have a theoretical average running time O(n(k 
+ log m)/m), which was proven optimal. In practice, filtering algorithms are among the 
fastest too.  
 
The main drawback of this approach is that the performance of filtering algorithms is 
very sensitive to the error level α. Most filters work very well on low error levels and 
very badly otherwise. This is related to the amount of text that the filter is able to discard. 
When evaluating filtering algorithms, it is important not only to consider their time 
efficiency but also their tolerance for errors.  
 
4. Empirical Results 
 
Navarro [Nav2001] implemented most of the algorithms discussed in this paper and set 
up some experiments.  He ran the algorithms using text and data from DNA application.  
It is noted that for short pattern (m ≤ 10) and varying k, the best performance algorithm is 
[BYN1999], then [Mye1999], [Kur1996] and [WM1992].   In the case of longer pattern 
(m=30), most of the observations are still valid, except [Mye1999] performs better than 
[BYN1999].  It is also noted that [Mye1999] is more stable over different values of m 
because the entire problem fits into a computer word.  Another observation from the 
experiments is that filtering algorithms perform better than non-filtering algorithms only 
when the error level α is low. Otherwise, it is better to use a non-filtering algorithm 
directly without filter. 
  
5. Conclusion 
 
Exact searching algorithms are simpler and much faster than the approximate searching 
ones. While most of exact pattern matching algorithms do not adapt well for inexact 
matching, automata approach adapts very well for inexact pattern matching. This makes 
automata approach a potentially good candidate for solving inexact pattern matching 
problem. For a given pattern, it is easy to create a NFA for it, especially with the ε-
transitions. However, these ε-transitions also cause the “zero-time” dependencies, i.e. the 
current values of two rows or columns depend on each other, and therefore cannot easily 
be computed in parallel.  Direct conversion of NFA to DFA is exponentially costly in 
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terms of time and space requirements.  Bit-Parallelism and Filtering provide potential 
means of speedup to make automata approach feasible. In spite of these difficulties, 
automata approach remains a potentially attractive in biological sequence analysis.  Since 
some motifs are expressed in regular expressions, and every regular expression can be 
converted to a NFA with ε-transitions, it is interesting to investigate this approach as a 
way to detect the common motifs. A recent algorithm that is based on union and 
intersection of automata to find the common motifs with gaps was proposed in 
[AHI2006]. 
 
 
Appendix: Comparison Table of Algorithms in this Paper 
 
 
Algorithms Worst Time/Space 

Complexity 
Advantages Limitations 

DP 
algorithms 

O(mn), worst 
O(kn) on average 

Flexibility – algorithm is easy to 
adapt to other distance functions 

Time requirement is high 

Automata 
algorithms 

O(m+n) if automata is 
deterministic 
 
Space O((k+1)m) 

Fast running time, close to O(n) Space requirement could 
increase exponentially. 
Direct conversion of 
NFA to DFA take 
exponential time 

[Ukk1985] Space 
O(min(3m,m(2m|Σ|)k)) 

Reduce the number of states and 
compute as DP matrix 

Number of states is huge 
except for short pattern 
or small error level k. 

[WMM1996] O(mn / log n) Reduce space requirement. 
Handle regular expressions with 
errors 

Trade time for space 
requirement. 

[Mel1996] Space 
O(min(3m,m(2mt)k, 
(k+2)m-k(k+1)!)), where 
t = min(m+1, |Σ|). 

Reduce the space requirement 
even more 

Processing time is t times 
the number of states 

[Kur1996] Space O(mn) States and transitions are built as 
needed 
Reduce space to at most O(mn) 

Growth of lazy automata 
is a function of m, k and 
n 

[Hol1996] Number of NFA states 
= (k+1)(m+1-k) 

Reduce the number of states of 
NFA  

The number of 
mismatches is not 
required. 

Bit-
Parallelism 
algorithms 

O(n) on average Significant speed up by a factor 
or 32 or 64 
Effective at any error level k 
 

Size of computer word. 
Adaptation to longer 
pattern is not efficient 

[Wri1994] DP O(nmlog(|Σ|)/w) Especially good for very small 
alphabets (e.g. DNA) 

Difficult to adapt to other 
distance functions. 
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[Mye1999] DP O((m/w).n) Adapts better to longer patterns. 
Allows extended pattern search 

Difficult to adapt to other 
distance functions 

[WM1992] 
NFA 

O(k.(m/w).n) Competitive to the best worst-
case algorithms for short pattern. 
Search with extended pattern, 
wild cards or regular expressions 
(Agrep) 

Limited capability to 
search a set of patterns at 
the same time 

[BNY1999] 
NFA 

O((k(m-k)/w).n) Can handle search with classes 
of characters, wild cards and 
different integral costs in the edit 
operations. 

Unstable performance.  
Show non-monotonic 
behavior. 

Filtering 
algorithms 

O(n(k + log m)/m) on 
average 

Fastest among all, close to the 
proven optimal 

Performance is sensitive 
to the error levelα. 
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